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Abstract. The equiatomic alkali-group-IV (Si, Ge, Sn, Pb) compounds usually crystallize in 
the NaPb structure. This structure contains negatively charged tetrahedra of group-IV ions, 
which are separated by alkali ions. The Li compounds, however, have either a CsCl (LiSn, 
LiPb) structure or a structure with a three-dimensional network of group-IV atoms, e.g. ,  
LiGe. A similar difference between Li compounds on the one hand, and Na, K,  Rb, Cs 
compounds on the other hand, has been found in the corresponding liquid alloys. We explain 
this difference in structures in terms of two factors: the existence of a gap in the density of 
states at the Fermi level in the phase with tetrahedra, and the radius of the alkali atom. When 
the alkali ion is too small, like Li', to separate the tetrahedra, then either the CsCl structure 
is the most stable, or a threefold-coordinated anion network will be the most stable structure. 
The latter structure occurs when the group-IV anions have a strong covalent interaction like 
for Ge and Si. 

1. Introduction 

The equiatomic alkali (A)-group-IV (B) solid compounds usually crystallize in the NaPb 
structure. Exceptions are the Li compounds which crystallize either in the CsCl structure 
(LiSn, LiPb) or in a structure with a three-dimensional network of the B sublattice 
(LiGe) in which the B atoms have a threefold coordination. Similar differences have 
been observed for the corresponding liquid alloys. (LiSi probably does not exist.) In 
these systems one electron is transferred from the alkali to the group-IV atom. In the 
NaPb structure all B atoms are in charged tetrahedra B:-. These tetrahedra are sep- 
arated from each other by A atoms. Some of these compounds have a structure, which 
includes a distorted tetrahedral building block. We will not discuss this phenomenon in 
this paper. The systems containing clusters, e.g. the B:- tetrahedra, are insulators. For 
more experimental details I refer to Meijer et a1 (1985) and van der Lugt and Geertsma 
(1984,1987). 

Geertsma et a1 (1984) derived a stability diagram (figure 1) which explains the relative 
stability of the clustering and the non-clustering compounds. In this paper we refine this 
model to determine the relative stability of the CsCl, LiGe and the NaPb structure. 

In order to do this we have to examine the next level of complexity, which involves 
the consequences of covalent interactions between clusters of anions. First we will briefly 
review some results of earlier work on this subject (Geertsma et a1 1984, Geertsma 1985, 
Dijkstra and Geertsma 1985). 
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Figure 1. Stability diagram of equiatomic alkali (A)-group-IV (B) compounds (A = Li, Na, 
K,  Rb, Cs; B = Si, Ge, Sn, Pb) separating clustering (region I) from non-clustering (region 
11) compounds. Details are discussed in the text and in Geertsma er ai (1984). 

We have shown (Geertsma 1990) that an isolated tetrahedron with fully occupied 
bonding levels is very stable. However, the valence charges on a tetrahedron repel each 
other. The isolated charged tetrahedra become unstable in the case of Phi-. In the solid 
the Pb:- tetrahedra are stable because they are embeddedin a deep crystalline potential: 
the Madelung potential of the non-metallic ionic lattice. However, such a strong 
potential is screened in a metallic system. We predict (Geertsma 1990) a first-order 
transition in the liquid state for APb. The prerequisite for the existence of these anion 
clusters in the Pb systems is the existence of a bandgap near the Fermi level, so we will 
concentrate on this property of the electronic density of states (DOS). In the systems we 
discuss the valence p states are half-filled, so we have to look for a gap in the middle of the 
p band. To simulate the atomic structure we use pseudo-lattices. A detailed discussion of 
these lattices can be found in Geertsma and Dijkstra (1985). The calculation of the 
electronic structure of liquid alloys with strong chemical bonding is much less developed 
than that of the corresponding crystalline solid. In order to get insight into the chemical 
bonding, which determines the structure, we use simple tight-binding models to calculate 
the density of states. The electronic DOS of a suitable chosen pseudo-lattice exhibits 
features reminiscent of those found in the bandstructure of the crystalline system 
(Geertsma and Dijkstra 1985). 

This paper is organized as follows. In section 2 we describe the electronic structure 
and stability of systems with clusters. In section 3 we calculate the electronic structure 
of the p states of a threefold-coordinated three-dimensional network. In this section we 
also study the effects of closed transfer paths (loops). The inclusion of transfer loops is 
of importance to describe structures in the DOS reminiscent of those occurring in the DOS 
of the crystal (Geertsma and Dijkstra 1985). Secondly, including transfer loops results 
in a broadening of the DOS with respect to the DOS of a Bethe lattice (figure 3(b)) .  Such 
loops have to be included in the study of the effects of weak localization of quantum 
interference on the electronic transport properties. The latter effects are absent in 
liquids. The main quantity determining the conductivity is the DOS at the Fermi level, 
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Figure 2. Modified Bethe lattice for 2, = 3 
(tetrahedron), 2, = 1. The transfer integral in the 
cluster is U, while V is the transfer integral 
between clusters. ! 

I 

Due to disorder transfer loops are also less likely in liquids than in crystalline materials. 
Section 4 contains a summary and a discussion of the results. 

2. The electronic structure and stability of a condensed system with anion clusters 

In this section we calculate the condition for the formation of a bandgap for a number 
of pseudo-lattice models. These pseudo-lattices describe the main features of the anion 
sublattice (Geertsma and Dij kstra 1985). We may restrict our discussion to this sublattice 
because the cation states are far above the Fermi level. The principal role of the alkali 
cations is to keep the anions or the charged tetrahedra apart. 

To calculate the electronic density of states we approximate the anion sublattice of 
the crystalline compounds with a NaPb structure by a pseudo-lattice. For this purpose 
we constructed the so-called modified Bethe lattice (MBL) (figure 2): the lattice points 
of a simple Bethe lattice are replaced by a Z ,  + 1 point cluster; for example for a 
tetrahedron Z ,  = 3. Each point of a cluster interacts with Z ,  points of different clusters 
with strength V .  The intracluster covalent interaction is U .  In figure 2 we give an example 
with Z ,  = 3, Z ,  = 1, that is a lattice of tetrahedra with one bond between corners of two 
tetrahedra. 

For simplicity we take ones orbital per site. Cation orbitals and Coulomb interactions 
are neglected. We have chosen s orbitals because these can be treated analytically; p 
orbitals are more difficult to treat and no new physics of importance for the present 
discussion is obtained. We obtained for general 2, and Z ,  the following condition for 
the opening of a gap in the DOS: 

This condition is 'exact' for pairs 2, = 1: ( U / I J ' ) ~  > Z,. Note that in the case of a linear 
chain (2, = 1,Z, = 1) one always has a gap. 

In the first paper of this series (Geertsmaet al1984) we have argued that a tetrahedron 
with p orbitals can be described by a pair cluster with s orbitals by choosing the appro- 
priate Z,. We have chosen Z ,  = 2, because this gives the same total coordination of the 
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pair cluster as found for the tetrahedra in the crystalline structure. The calculated 
electronic structure is qualitatively similar to the one calculated using the Augmented 
Spherical Wave method (Springelkamp eta1 1985). It also agrees with recent calculations 
using the recursion method (Meijer 1988). This approximation gives the horizontal line 
in the stability diagram separating the metallic region, with clusters, from the non- 
metallic region also with clusters (figure 1). Note that only the Li compounds and 
probably NaPb are predicted to be metallic; all the other compounds are non-metallic, 
as has indeed been found experimentally. 

It would be of interest to extend this calculation to the degenerate p orbitals on 
covalently interacting tetrahedra. To get some insight into the effects due to orbital 
degeneracy we have studied a system consisting of two sets of g-fold-degenerate unper- 
turbed states per cluster. For a tetrahedron g = 6. On the tetrahedron p orbitals split 
into a sixfold nearly degenerate set of bonding states and a sixfold nearly degenerate set 
of antibonding states. These states are separated by 2EB. This parameter is similar to 
the parameter U we used in the case of pairs on a MBL. The clusters are considered as 
sites on a Bethe lattice. States on nearest neighbour sites hybridize in the following way: 
V between the same orbitals, Vo between orbitals of the same set, VI between orbitals 
of different sets. The number of nearest neighbours is Z. For more details see Geertsma 
and Dijkstra (1985). The condition for the existence of a gap is 

(EB/V)2 > 4(Z - 1){[1 + (g - 1>V,,/VI2 - g 2 ( v l / v ) 2 > .  ( 2 . 2 )  

Let us compare this result with that obtained above for s-type orbitals on a MBL. For the 
case of s orbitals on a pair clusterg = 1, one obtains (EB/V)2 > 4(Z - 1)[1 - (V,/V)2]. 
Note that for V1 = V one always finds a gap. Also for a linear chain, 2 = 1, one will 
always find a gap in the DOS of this model. This result is the same as the one obtained for 
a pair cluster on a MBL. 

Also in the case where all interactions are the same the gap is open. This is due to 
the second term in the brackets (V,/V): this interaction between different levels, Vi, 
pushes these levels apart, and even compensates for the broadening of the individual 
bands due to the nearest neighbour interactions, Vo, between levels of the same set. 
From these results we conclude that when one discusses the formation of a band gap, 
the MBL with the pairs ( Z ,  = 1) with one s orbital per site is a reasonable approximation 
for threefold-degenerate p states on a tetrahedron. 

The results of this paragraph and the previous one on the MBL lattice cannot be 
compared in all their details, because in the former we took the phase of the wave 
functions into account in the interaction between nearest neighbours, while in the latter 
we neglected this. We argue that the MBL model is more appropriate for a crystalline 
solid, while the latter is more applicable for a disordered system. 

Finally we consider some effects which have been left out so far in our discussion of 
the formation of a gap. 

(i) Dissociation of the clusters. 
(ii) The influence of the cation levels. 
(iii) Chemical short-range order (a). 

These points have been discussed by Geertsma (1985), using a renormalized per- 
turbation expansion of the self-energy up to the second step in the continued fraction. 
The A+ and B- ions and the Bi- clusters are distributed over the Bethe lattice. The 
short-range order is described by Warren-Cowley parameters o!,. Using this approach 
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one can easily derive the following expression for the formation of a gap in the DOS when 
we assume the cation orbitals to be far away from the anion orbitals 

where pcc = c, + c,o is the conditional probability of finding a cluster, next to another 
cluster. The subscript c refers to the cluster B,, c, is the fraction of clusters and g is the 
number of states of each set of bonding and antibonding cluster levels. This condition 
differs from the one above, (2.2), because in this approximation one neglects repeated 
transfer of an electron between two nearest neighbours. In this way a large part of the 
energy levels shifting away from each other is not accounted for. Secondly, the cut off 
of the renormalized perturbation expansion results in the well known square root 
dependence of the bandwidth on the coordination number. The same holds for the 
degeneracy factor g.  When the degeneracy is treated in the right way, as in equation 
(2.2), it appears as a linear term. Setting V I  = 0 and V ,  = Vas done in the derivation of 
equation (2.3), equation (2 .2)  gives EB > 2 m g V .  

In equation (2.2) one can replace Z - 1 byp,,(Z - 1) so as to incorporate chemical 
short-range order in that model. In the case of an A4B4 (c, = 0.2) alloy the short-range- 
order parameter becomes for complete order o = -0.25, and sop,, = 0. In this limit the 
gap always exists because the clusters are isolated from each other by the cations. In the 
case of complete disorder o = 0, so pcc = 0.2. Broadening due to degeneracy of the 
cluster levels can be compensated by order of the liquid alloy. 

From these calculations we learn that in the case of formation of clusters the band 
width increases with increasing degeneracy of the cluster levels. This broadening is 
opposed by the short-range order because then short-range order strongly decreases the 
effective number of nearest neighbours. In the limit of complete order each charged 
cluster is coordinated by cations with orbitals unavailable for electron transfer; conse- 
quently the electron or cluster-type orbitals become narrow. So a gap will appear in the 

(E*/V)*  > 2Pccg(Z - 1) (2.3) 

DOS. 

3. The electronic structure of a threefold-coordinated network 

In this section we consider the DOS of a threefold-coordinated network as an idealized 
model (figure 3(a)) for the three-dimensional network of Ge in LiGe. The corresponding 
pseudo-lattice models used for the simulation of the structure are in figure 3(b) ,  (c). On 
each site we have three p orbitals: one p orbital has a o bond Vu with a p orbital on a 
nearest neighbour site and the two others have a n bond V ,  with the other two nearest 
neighbours. The sticking of the sites is in such a way that when one neglects t hen  bonding 
only isolated o bonded pairs remain. In the discussion below we will again emphasize 
the conditions for the formation of a bandgap at the Fermi level. We neglect closed 
transfer paths like the path ABCDEF in figure 3(a),  but preserve the right order of n 
and 0 bonds, and also the nearest neighbour coordination number. The simplest pseudo- 
lattice corresponding to this lattice (figure 3(a)) is given in figure 3(b).  One can derive 
for the DOS 

where Tu = V,/(E - 2V,T,), and Tx is given by the solution of 

A gap will open in the DOS if 

n(E) = - (1/n) Im 1/(E - TUVU - 2T,V,) 

(ET,T - V ,  - V,T;)(E - 2T,V,) - V $ T ,  = 0. 

V J V ,  3 v 2 .  

(3.1) 

(3.2) 

This transfer matrix method is on this level of approximation equivalent to cutting 
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Figure 3. (a )  Lattice model for a threefold-coordinated network. ( b )  Schematic two-dimen- 
sional representation of a pseudo-lattice corresponding to this lattice (figure 3(a)). without 
closed transfer paths. (c) The corresponding pseudo-lattice including the shortest hexagonal 
closed transfer paths. 

of the renormalized perturbation expansion or continued fraction expansion at the 
second step (pair approximation). 

We have also studied the influence of taking into account shortest closed transfer 
paths ABCDEF in figure 3(a),  using the renormalized perturbation expansion. The 
pseudo-lattice retaining the coordination number and the order of n and CJ bonds, 
corresponding to the real lattice (figure 3(a)) ,  is given in figure 3(c). Note that only part 
of these shortest loops can be taken into account because each bond is shared by two 
tilted hexagonal closed transfer paths. The results with and without taking into account 
the lowest-order closed transfer path (of order V',Vi),  are presented in figure 4. Closed 
transfer paths suppress the formation of a gap. 

To  study the influence of interlayer interactions we assume that each atom has a one- 
electron interaction W with three nearest atoms in another nearby layer. We neglect 
closed transfer paths. The results of the formation of a gap are given in figure 5 
(V,/V, = 4). For W > 0.5 V,, we find that the gap closes, thus resulting in a metallic 
system. A structure with a high coordination number is usually favourable for metals. 
Furthermore we have plotted in the same figures the density of states in the middle of 
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Figure 4. Gap (E,) in the DOS as a function of n 
bonding for V ,  = 1, and DOS in the middle of the 
band ( N ( w  = 0)): A: without transfer loop; B: 

Figure 5. Gap (E,) and density of states N (  o = 0) 
as a function of the interlayer interaction W for 
V,/V, = 0.25; interlayer coordination number 

with transfer loop. z=3. 

the band. This density of states first increases strongly with increasing Wor V, and then 
decreases. Harrison (1980) finds rather generally V,/V, = 4, so we predict that as long 
as interlayer interactions can be neglected a gap will open in the density of states. 

Let us now study the stability of this lattice for half-filled p orbitals. In the limit of 
small n bonding this can be easily done: the isolated (T bonds have a stabilization energy 
of -2V, per pp, bond at half filling; the total number of such bonds in the lattice is 3N 
(N is the number of atoms), so the stabilization energy is -3V, per atom. This is 
somewhat larger than the stabilization of a tetrahedron (-2.67 V,per atom, see section 
2). The covalency parameter is inversely proportional to the interatomic BB distance. 
So when the B- ions can, on the average, come closer to each other in the threefold- 
coordinated network than in the clustering structure, the first structure has a lower 
energy than the clustering structure. This is what happens in the LiB compounds. For 
all the other alkali compounds (A = Na, K,  RB,  Cs) the distance between the B- ions 
becomes too large to stabilize the network with respect to the clustering structure. 

The next question one has to answer is: when is this network structure more/less 
stable than the three-dimensional CsC1-like structure of LiPb and LiSn. The stability of 
the network derives from the opening of a gap in the DOS in the Ge and Si compounds. 
This is not possible in the case of the Pb and Sn compounds. Madelung contributions to 
the stabilization of the structure play an important role in the case of non-metallic 
systems. These contributions are probably of importance in LiGe. This question will be 
treated in more detail in a separate paper (Geertsma 1990). 

This correlation between closing of the gap and change in structure is also observed 
in the sequence of the isoelectronic P, As, Sb, Bi. All isomorphs of P are non-metallic 
while Bi is metallic with a structure with a high coordination number. As and Sb have 
layered structures with a threefold coordination; however, with increasing atomic weight 
the ratio of the interlayer interactions to the intralayer interactions increases and closes 
the covalent gap. Interlayer interactions are of the same magnitude as the intralayer 
interactions, especially for the heavier metalloids (Bellisent et a1 1987, Gaspard et a1 
1987). 

4. Summary and discussion 

We have studied the stability of solid compounds with strong anion-anion covalency. The 
lattice is simulated by pseudo-lattices to take into account the principal characteristics of 
the real lattice: coordination number, local symmetry. Geertsma and Dijkstra (1985) 
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have shown that such an approach for the calculation of the electronic DOS describes its 
main characteristics: singularities (van Hove, logarithmic), bandgaps. Only the band- 
width is suppressed and sometimes spurious localized states are found outside the 
band. This approach gives a good approximation for the total one-electron energy as it 
incorporates a number of the lowest moments of the DOS. In the case of the tetrahedron 
structure closed paths of the order ( UV)4 and in the case of the three-dimensional 
network closed paths of the order ViV:  are neglected. The difference in the structure 
of LiGe and the NaPb structures is mainly attributed to the cation radius. The Li+ radius 
is too small to separate anion tetrahedra, while it is small enough to support a three- 
dimensional threefold-coordinated network of Ge. 

A more genuine application of the model presented in this paper is to the structures 
of the post-transition metal elements as in this case Coulomb interactions do not play an 
essential role determining the energy difference between structures. The heavy post- 
transition elements like Sn, Pb, Sb, Bi crystallize in a metallic phase, while the light 
elements of this group crystallize in an insulating phase (Si, Ge, P ,  As, S ,  Se). The 
difference in structures can be understood in terms of the large coordination numbers 
of the metallic phase, thereby lowering the kinetic energy of the valence electrons, and 
low coordination numbers of the non-metallic system with strong covalent bonding, so 
enhancing the stability of the bonding bands. 

The stability diagram for the equiatomic alkali-group-IV compounds (figure 1) is 
divided into four regions. In region IIA the covalent interactions within the tetrahedra 
are strong and so cause a splitting in the valence band in a bonding and an antibonding 
band. These compounds are solid state semiconductors. In the liquid state these com- 
pounds have a very high resistivity. The compound NaPb is on the borderline between 
the regions with clusters and without clusters. In the solid state one observes the Pb:- 
tetrahedra, while in the liquid only a small fraction of the Pb ions are in clusters. Region 
I is divided into a region with weak interactions between the anions: LiPb and LiSn, and 
a region with strong interactions between the anions: LiGe and LiSi. The first have a 
CsC1-like structure and are metallic, while the anions in the second compounds form a 
three-dimensional network. In the liquid state LiPb and LiSn have a low resistivity, 
while the resistivity of liquid LiSi and LiGe is in the region of diffusive motion. 
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